NASA Technical Memorandum 4216

A Preliminary Evaluation of an
F100 Engine Parameter Estimation
Process Using Flight Data

Trindel A. Maine, Glenn B. Gilyard,
and Heather H. Lambert

AUGUST 1990

NANASAN



NASA Technical Memorandum 4216

A Preliminary Evaluation of an
F100 Engine Parameter Estimation
Process Using Flight Data

Trindel A. Maine, Glenn B. Gilyard,
and Heather H. Lambert

Ames Research Center

Dryden Flight Research Facility
Edwards, California

NNASN

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Division

1990



A PRELIMINARY EVALUATION OF AN F100 ENGINE
PARAMETER ESTIMATION PROCESS USING FLIGHT DATA

Trindel A. Maine*
Glenn B. Gilyard**
Heather H. Lambert**
NASA Ames Research Center
Dryden Flight Research Facility
Edwards, Califomnia

Abstract

The increasing use of digital engine control allows
significant improvement in the performance of aircraft
engines. This improvement can be achieved by the
use of sophisticated control algorithms designed to re-
cover the full performance potential of the propulsion
system. The NASA Ames Research Center, Dryden
Flight Research Facility; McDonnell Aircraft Com-
pany; and Pratt & Whitney are in the process of de-
veloping and flight testing a performance secking con-
trol (PSC) system on the NASA F-15 research aircraft
to optimize the near-steady-state performance of the
F100 turbofan based propulsion system. The paperis a
preliminary evaluation of the engine parameter estima-
tion algorithm which is the primary adaptive clement
of the PSC algorithm. An evaluation has been made
using flight data from the F-15 airplane. The flight data
presented were obtained at Mach 0.90 and 30,000 ft
and at three throttle positions, one of which was at
intermediate power. Based on the theoretical formu-
lation and the limited evaluation using flight data, it
appears that this estimation algorithm can provide rea-
sonable estimates of an extended set of engine vari-
ables nceded for advanced propulsion control law de-
velopment. However, it must be noted that conclu-
sions drawn from this investigation arc not strong be-
cause of a lack of independent flight mcasurements of
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many of the variables being estimated. Additional sen-
sors or independently derived estimates of many of the
extended variables are needed to firmly establish the
validity of the estimation algorithm.

Nomenclature
A state matrix
AAHT high pressure turbine area adder
deterioration parameter, in?
AJ nozzle throat area, in®
AJEFF effective nozzle throat arca, in?

Amcs-Dryden

Ames Research Center, Dryden
Flight Research Facility

B control matrix

BLD bleed air, 1b/sec

C state observation matrix

CEM compact engine model

CIVvvV compressor inlet variable guide
vane angle, deg

D control observation matrix

DEEC digital clectronic engine control

DEHPT high pressure turbine deterioration
parameter, percent

DELPT low pressure turbine deterioration
parameter, percent

DNOZ nozzle drag, Ibf

DRAM ram drag, 1bf

DWFAN fan airflow deterioration parameter,

1b/sec



DWHPC

EMD

FG
FNP

HIDEC

HPX

N1
N2
Pamb
PB
PLA
PS2
PSC
PT
RCVV
SMF
SMHC

SSM
SVM
TMT

TT
WCFAN
WCHPC

WF

Subscripts
b

high pressure compressor airflow
dcterioration parameter, 1b/sec

engine model derivative

steady-state model sensitivity matrix
gross thrust, Ibf

net propulsive force, 1bf

pressure altitude, ft

highly integrated digital engine
control

horsepower extraction, 1b/sec
steady-state Kalman gain matrix
fan rotor speed, rpm

compressor rotor speed, rpm
ambient pressure, 1b/in?

bumer pressure, 1b/in?

power lever angle, deg

static pressure at engine face, Ib/in?
performance seecking control

total pressure, 1b/in®

rear compressor variable vanes, deg
fan stall margin

high pressure compressor stall
margin

steady-state model

state variable model
composite metal temperature
total temperature, °F

fan airflow, lb/sec

high pressure compressor airflow,
Ib/sec

gas generator fuel flow, 1b/hr
control vector
state vector

vector of estimated engine variables
in the steady-state model, and
vector of measured variables in
the state variable model

predicted trim values, interpolated
from tables

c corrected

m mcasured

o anglc of attack, deg
B angle of sideslip, deg

Superscript

" estimated value of variable
Prefix

A perturbation

Suffix

RES Kalman filter residuals

Suffix, F100 engine station numbers, ref. Fig.1

2 fan inlet

2.5 compressor inlet

3 compressor discharge

4 high pressure turbine inlet

45 low pressure turbine inlct

6 afterburner discharge inlet

7 nozzle throat discharge
Introduction

The increasing use of digital engine control has
opened up the possibility of significantly improving
the performance of aircraft turbofan engines. This im-
provement can be achieved by the use of control al-
gorithms designed to recover the full performance po-
tential of the propulsion system. These control algo-
rithms need accurate models of the system and esti-
mates of unmeasured parameters that can be used ef-
fectively in a real-time environment over an extended
operational envelope. Variations in manufacturing tol-
erances and the uncertainty associated with engine de-
terioration and other off-nominal behavior of gas tur-
bine components over time significantly increases the
difficulty in developing accurate models.

The Air Force has considerable interest in devel-
oping performance seeking control (PSC) technology
with the intent of applying it to advanced fighter de-
signs and has funded an independent PSC study.! Fa-
vorable results from this study support further research
into adaptive optimization algorithms. NASA has a
history of supporting the development, flight test, and



evaluation of propulsion system improvements. The
F-15 flight research program started in the early 1980°s
by implementing a digital electronic engine control
(DEEC)?» followed by flight test of an F100 en-
gine model derivative (EMD),? and most recently im-
plementing a highly integrated digital electronic con-
trol (HIDEC).4 6 As an extension of previous NASA
propulsion programs and the Air Force PSC study,
thec NASA Ames Research Center, Dryden Flight Re-
scarch Facility (Ames-Dryden) contracted for the de-
velopment of a PSC system on the NASA F-15 re-
search aircraft to optimize the near steady-state perfor-
mance of an F100 based propulsion system. This sys-
tem is approaching flight test at NASA Ames-Dryden.

The development of the PSC algorithm has required
accurate estimates of variables not normally available
on current engines. In preparation for flight test of
the NASA PSC program, the contractor developed,
Kalman filter based estimation algorithm’ was eval-
uated by NASA with flight data obtained during a pre-
PSC flight-test phase. Only the estimation portion of
the PSC algorithm was evaluated. The estimation al-
gorithm results are significant since the estimation al-
gorithm is not limited in application to the particular
control methodology or the specific engine selected for
the NASA project. A flight data evaluation of the en-
tirc PSC algorithm was not possible prior to actual im-
plementation, because of its closed-loop nature. The
algorithm was tested extensively with simulated data
during the development process. The simulation re-
sults have generally been excellent but are not pre-
sented in this paper. The investigation of this paper,
using flight data, was made based on the concem that
the algorithm may be sensitive to real world problems
that are not easily simulated. A particular concem is
that the models used in the algorithm were directly de-
rived from the same nonlinear simulation that was used
to develop and evaluate the algorithm. Additionally,
real data inevitably challenges such simplifying ana-
lytical assumptions such as the noise on the system is
white or that the engine is operating in steady state.

The parameter estimation algorithm in this paper is a
two-step process. The flight evaluation results of each
step are presented separately. In the absence of mea-
surements of many of the estimated engine variables, a
conclusive evaluation is not possible. However, com-
parisons are made for a few parameters for which re-
search instrumentation is available but are not normal
for production engine instrumentation. The flight data

presented were obtained at Mach 0.9 and 30,000 ft al-
titude and at three throttle positions, one of which was
at intermediate power.

Airplane Description

The PSC program will be implemented on the
NASA F-15 research airplane which is a high-
performance air superiority fighter capable of speeds
in excess of Mach 2. The F-15 airplane is powered by
two afterbuming turbofan F100 engines. The aircraft
has been modificd with a digital electronic flight con-
trol system; the excess capacity of this system is used
for the rescarch of integrated propulsion flight control
topics. Additional information on the F-15 airplanc
can be found in Ref. 6.

The F100 EMD engine used in this study is a low-
bypass ratio, twin spool, afterburning turbofan derived
from the F100-PW-100 engine. The engine incor-
porates both compressor inlet variable vanes (CIVV)
and rear compressor variable vancs (RCVV) to ob-
tain improved performance over a wide range of en-
gine operating conditions. The aftcrburner consists
of a 16-segment augmentor that provides continu-
ously variable thrust augmentation. The convergent—
divergent nozzle also has variable area control.

The engine is controlled using a DEEC, which per-
forms the functions of the standard F100 engine con-
troller. The DEEC provides both open-loop schedul-
ing and closed-loop feedback control of fan airflow
and engine pressure ratio. A more detailed description
of the F100 EMD engine can be found in Myers and
Burcham.? A diagram of the engine showing relevant
instrumentation is shown in Fig. 1. The engine instru-
mentation is sampled at 20 Hz. Only the left engine
was analyzed in this paper because it had research in-
strumentation at station 2.5 in addition to the standard
set of operational instrumentation.

Parameter Estimation Process

The parameter estimation algorithm is a two-step
process as shown in Fig. 2. The first step consists of a
Kalman filter estimation of five deterioration parame-
ters. These parameters are designed to model the off-
nominal behavior of the engine during flight. They
are the changes in efficiency of the low and high pres-
sure turbine (DELPT and DEHPT), the changes in air-
flow in the fan and high pressure compressor (DWFAN
and DWHPC), and a high pressure turbine area adder
(AAHT). The second step is based on a simplified



steady-state model of the engine referred to in this pa-
per as the compact engine model (CEM). In this step
the control vector in the CEM is augmented by the de-
terioration parameters estimated in the first step. The
deterioration paramcters shift the model to more ac-
curatcly reflect the actual operating condition of the
engine. The CEM then produces estimates of the en-
ginc variables needed by the follow-on control laws.
Flight measurements are used both to look up model
data and as direct inputs for both the Kalman filter and
the CEM. These two steps and their respective models
arc described in detail in the following sections.

Kalman Filter Implementation

The first step in the estimation algorithm is designed
to identify the off-nominal characteristics of the engine
when operating in a near steady-state condition. Thisis
donc by estimating five deterioration parameters with a
Kalman filter.” These parameters are used to adjust the
subsequent CEM to more closely match the measured
flight data.

The state variable model (SVM) is used in the desi gn
and implementation of the Kalman estimator. It is a
piccewise linear model representing the entire range of
engine opcration at 0.9 Mach, 30,000 ft altitude, stand-
ard day conditions. It consists of a state-space pertur-
bation model and an associated table of steady-state
trim values for all the engine variables in the model.
The state-space perturbation model has the form

At =[AlAz+ [BlAu
Ay=[Claz+ [DlAu (D

where

Az =1 — 39
Ay=y—uw
Au=u—uy

and associated Kalman filter formulation

Az =[A]AZ+ [BlAu+ [K](Ay — AD)
Ay =[ClA%+ [D]Au

The state vector, z, control vector, 4, and measurement
vector, y, are defined as follows

N1

N2 WF

T™T AJEFF }i;g
o= DEHPT u= CIvv y= TT45

DELPT RCVV N1 '

DWFAN HPX N2

DWHPC BLD

AAHT

There arc 49 sets of A, B, C, D, and K matri-
ces corresponding to values of PT'4 ranging from 23
to 260 1b/in> which accommodate the engine oper-
ating range for the flight envelope corrected to the
Mach 0.90, 30,000 ft altitude reference condition. The
SVM uses the set of matrices closest to the input
value of PT'4, with some intentional overlap of modcl
ranges to avoid frequent model switching when op-
erating at a PT'4 close to halfway between models.
The matrix elements were derived by perturbation and
numerical differentiation of a large component-based
nonlincar aerothermal simulation of the engine devel-
oped by the manufacturer. The last five states are in-
tended to model engine deterioration. As such these
parameters should be changing only very slowly and
are modeled as locally constant, that is the last five
rows of both the A and B matrices are zeros.

Figure 3 is a block diagram of the Kalman filter im-
plementation. The Kalman gain matrix, K, was de-
termined in advance assuming the system to be time
invariant for near-steady-state engine operation. In de-
termining the K matrix, the measurement noise inten-
sity matrix was obtained from known engine statis-
tics. The process noise intensity matrix was assumed
10 be the adjustable design parameter for the Kalman
filter. The filter operates at 8 Hz. Details concerning
the Kalman filter design can be found in Ref. 7.

The associated tables of steady-state trim values are
scheduled as a bivariate function of PT4 and PT6.
The tables are linearly interpolated over 7 values of
PT'4 and 40 values of PT'6. The table, also derived
from the full nonlinear simulation, consists of the pre-
dicted steady-state values of the z, y, and u vectors for
a nominal undeteriorated engine over the entire flight
envelope corrected to the design condition. These are
the z3, ¥, and u; vectors in equation (1). The perturba-
tion vectors input to the filter, Au and A y, are thus the



difference between flight condition corrected control
and measurement vectors, and the trim predictions at
each point in time. The trim predictions are computed
for each sample of data input to the SVM using filtered
values of PT'4 and PT'6, thercfore the reference trim
condition is constantly changing.

Values for the following measurements and control
variables are taken directly from flight data: N1, N2,
PB,TT4.5, P6, WF, CIVV, and RCVV. Addi-
tional engine and flight parameters are used indirectly
by the Kalman filter algorithm for correcting the en-
gine data and calculating other engine variables. These
are PT2,TT2, PS2, P,mp, Mach, and PLA. The
PT4 is calculated as a function of PB and PT?2. The
measured and calculated variables are corrected to the
SVM design condition of Mach 0.90 and 30,000 ft alti-
tude. Each engine variable has a correction factor that
is a function of PT2 and T'T2.

Three of the inputs to the Kalman filter, bleed
air (BLD), horsepower extraction (HPX), and effec-
tive nozzle throat area (AJEFF) present special
problems. The BLD and HPX are not measured. How-
cver analysis showed that at lcast the effect of bleed air
was significant and needed to be explicitly accounted
for in the model. The model matrices were linearized
about an engine with no blced or horse power extrac-
tion modeled. It was decided to explicitly include BLD
and HPX as inputs to the model using the scheduled
values of these parameters. The HPX is scheduled as
a function of N2, and BLD is scheduled as a func-
tion of Mach and altitude. While these two inputs are
known to vary from the nominal schedules, using the
scheduled values is considered preferable to ignoring
these effects. This approach allows the use of the same
models for both engine test stand data with no bleed
and actual flight data with bleed. Morcover the nomi-
nal schedules can be modified if flight test shows it to
be warranted. A theoretically cleaner but perhaps less
flexible approach would have been to derive the model
matrices about an engine with the nominal bleed and
horsepower extraction included and not have BLD or
HPX as inputs. The nozzle throat area input was also
a cause for concern. The measurement of the nozzle
area is one of the poorer measurements on the system,
in particular it is prone to measurement bias. Moreover
the models were derived for subsonic operation with-
out the afterburner. It was concluded that the model
required an effective nozzle area rather than the ac-
tual measured nozzle area. Therefore the change in

effective nozzle area input (AAJEFF') is computed
using the temperature and pressure measurcments at
station 6, the measured nozzle arca, and the engine
fuel flow.

Compact Engine Model

The second step in the estimation process is based
on the CEM, which is a simplified steady-state sim-
ulation of the engine used to estimate the desired en-
gine variables. The CEM consists of a linear stecady-
state perturbation model, steady-state trim tables, and
follow-on nonlinear calculations. Figure 4 is a block
diagram of the CEM.

The steady-state perturbation model (SSM) is a
piecewise linear model that serves as the basis of the
CEM. Itis implemented as a steady-state perturbation
model having the form

Ay=[FlAu (2)
where

Ay=y—1u

Au=u—uy

u and y represent the control input and measurement
vectors respectively. They are defined to be

WE N1
N2
PT6 AT
CIvV PT25
RCVV
PT4
HPX
TT2 5
u= BLD Y= s
DEHPT T4
DELPT TT4 s
DWHPC TT6
oA weran
WCHPC

This modcl was also derived by perturbation and nu-
merical differentiation of the full nonlinear engine sim-
ulation at the Mach 0.90 and 30,000 ft altitude design
condition. It was translated to the sea level static stan-
dard day reference condition using standard correction
factors. The steady-state trim tables are analogous to
those used with the SVM in the Kalman filter, provid-
ing the y; and u;, vectors in equation (2). Both the SSM
trim and the matrix models are scheduled as a bivariate
function of PT4 and PT'6 using linear interpolation
between model points.



The SSM uscs engine measurements for the follow-
ing variables: WF, PT6,CIVV, and RCVV. As with
the Kalman filter, additional flight parameters arc used
to calculate additional SSM inputs and correction fac-
tors. The HPX and BLD are again derived from sched-
ules. The measured inputs are corrected to the SSM sca
level static reference condition using correction factors
that are a function of PT'2 and T'7°2 . The Kalman fil-
ter estimates of the deterioration parameters from the
first step are input to the SSM calculation as the last
five elements of the control vector. The F' matrix and
sct of trim predictions are obtained for each sample
of engine data as a function of PT'4 and PT6, there-
fore the model and trim conditions may be constantly
changing. The SSM provides estimates of the follow-
ing variables at sea level static conditions: N1, N2,
AJ, PT2S5, PT4, TT2.5, TT3, TT4, TT4 .5,
TT6, WCFAN, and WCHPC. These estimates
are then recorrected to the original flight condition for
comparison with flight values and for use in the subse-
quent nonlinear CEM calculations.

Following completion of the lincar SSM calcula-
tion, the nonlinear CEM estimates are calculated at
the original flight condition. These variables include
PT7, TT7, FG, FNP, DRAM, DNOZ, AlJ,
SMF, and SMHC. The nonlinear calculations are
bascd upon both measurced engine variables and SSM
cstimates. They usc a combination of analytical equa-
tions and empirically derived data tables. The PT7
and T'T"7 are calculated from the station 6 variables us-
ing afterburner heat addition and friction effects mod-
ified by afterburner efficiencies. Gross thrust is calcu-
lated as a function of the station 7 variables and overall
airflow and fuel flow. The fan stall margin is a function
of the fan pressure ratio PT2 .5/PT2, N1, and CIVV
position. The high compressor stall margin is calcu-
lated from a compressor disc pressure derived from
PT4, the estimated PT2 .5, and the RCVYV position.

Maneuver Description

To evaluate how the Kalman filter would perform
in a flight environment, flight data were obtained from
the F-15 airplane. A maneuver was desired that would
simulate a small change in engine operating efficiency
at a near-steady-state flight condition. Defining such
a maneuver was not trivial since normal aircraft ma-
neuvers don’t have much effect on engine operation
except by changing the flight condition or introduc-
ing inlet distortion. There was also no way to intro-

duce small perturbations to any of the standard en-
gine controls. However, the pilot can sclectively com-
mand the aircraft to get its bleed air only from cither
engine rather than both engines as is nominal. This
would create changes in the bleed air flow and result
in a small change in engine operation. A disadvantage
of this potential maneuver was that the bleed air flow
is not measured and thus is not known with much ac-
curacy. At the time this flight experiment was being
conducted, neither the SVM nor the SSM models had
bleed or horsepower extraction as inputs. It was dc-
termined that switching the bleed air from one engine
to the other was the best way to introduce a small un-
modeled change to the engine operation to test the abil-
ity of PSC estimation algorithm to follow that change.
The resulting change in engine operation was slightly
larger than anticipated and early analysis of the results
led to the reformulation of the models to include BLD
flow and HPX as inputs to the model. The analysis in
this paper uses the current models.

The mancuver flown consisted of flying at a stabi-
lized flight condition with the bleed air coming from
both engines for approximately 1 min, switching to
get all the bleed air from the right engine for approx-
imately 1 min, switching to get all the bleed air from
the left engine for approximately 1 min, then retuming
1o get the bleed air from both engines for 1 min. This
was done at Mach 0.9, 30,000 ft altitude at left engine
power lever angle (PLA) settings of 32°, 48°, and 83°.
The PLA was varied to obtain a range in the PT'4 and
PT6 engine pressures. This is the model design con-
dition so modeling errors should be at aminimum here.

The basic characteristics of this flight segment can
be seen in the left engine response and control vari-
ables shown in Fig. 5. The BLD and HPX traces were
synthesized from nominal schedules. Since BLD is not
measured, the precise times of the bleed switches have
been manually estimated based on pilot call-out during
the flight and the secondary effects observed in other
parameters. The bleed trace has been set to zero when
the left engine bleed was switched off. The nominal
schedules assume that the bleed air is coming equally
from the two engines and follows the scheduled bleed
curve as a function of Mach and altitude, however,
the actual bleed flow from the two engines may dif-
fer substantially. When all the bleed airflow is coming
from the left engine, the amount of increased airflow
is indeterminate. No attempt has been made 10 model
this increase.



Kalman Filter Results

This section presents the Kalman filter estimates of
the deterioration parameters. The deterioration param-
eters are intermediate values in the estimation pro-
cess and have no standards for comparison. The en-
gineering meaning of these parameters is somewhat
ncbulous because in addition to actual changes in en-
gine efficiency, they pick up Reynolds effects which
are not accounted for in the model, sensor biases, and
crrors in the stcady-state trim tables. Their primary
function in this estimation algorithm is to shift the
CEM to more closely match flight data. The only con-
crete way to evaluate the deterioration parameters is
to observe their effects on the CEM parameter esti-
mates. This will be done in the section on the per-
formance of the CEM. They will however, be pre-
sented here with some primarily qualitative discussion.
The flight segment analyzed contains two large PLA
changes (Fig. 5(a)); these changes cause substantial
model changes and large engine transients. The algo-
rithm was designed for near-steady-state operation and
as such, the filter results during the PLA transient are
in transition and should be ignored.

The data werc evaluated with two blced models. In
the first, the nominal bleed schedule was used through-
out the {light segments, including when the bleed flow
from that engine had been cut off by the pilot. This
case represents an unmodeled disturbance. The change
in bleed flow from the engine can only be detected
by the Kalman filter indirectly through changes in the
other variables. Since bleed is input as being con-
stant, the changes in engine operation caused by ac-
tual changes in the bleed should appear as a change
in the engine operating efficiency. In the second case,
the nominal bleed flow model was overridden with a
zero input when the bleed was known to be turned off.
Therefore in this case the Kalman filter model knows
about the change in bleed airflow and should accom-
modate expected changes in other variables without
changing the deterioration parameters. Recall BLD is
not a measured variable and the nominal bleed sched-
ule is only a reasonable guess, and thus is a probable
source of modeling error that will show up as changes
in the deterioration parameters. Moreover, the maneu-
ver also had approximately a 1-min segment when all
the bleed air was being pulled from the left engine. As
such the bleed air taken from the engine was proba-
bly higher than nominal during that minute; however,

as reasonable numbers for how much higher are not
available the nominal bleed level was used here.

The control inputs to the Kalman filter are shown
in Fig. 6. These inputs are the diffecrence between the
measured control values and the predicted trim val-
ues of those controls. An example of this process is
shown in Fig. 7 for fucl flow, the bottom plot shows
the actual mcasured fuel flow plotted with the trim
values. The resulting difference, AW F, is shown in
the top plot. Note that some of the more pronounced
changes in AW F are caused by the measurement and
the trim value moving in opposite directions, this is
particularly evident when the bleed was switched off
at about 720 sec. The trim table values for BLD and
HPX are zero. The five measurement inputs are shown
in Fig. 8. Again these are the differences between the
measured values and the trim values scheduled as func-
tions of PT'4 and PT6. The trim lookups are done
with filtercd values of PT'4 and PT'6 so the A PT4
and A PT6 traces are simply the difference between
the unfiltered and the filtered values. The residuals for
these five variables are shown in Fig. 9, indicating that
at least steady-state, good matches were obtained.

The deterioration parameters for the Mach 0.9 and
30,000-ft altitude flight segment are shown in Fig. 10.
Shown are the values for the detcrioration paramctcrs
both with a nominal bleed assumed throughout and
with the bleed input set to zero when the bleed was
switched off. The bleed maneuver has a pronounced
effect on the five deterioration parameters, particularly
at the lower PLA settings. The Kalman filter seems to
handle the resulting transient well. The low turbine de-
terioration parameter tends to increase over the flight
segment, while the high turbine deterioration parame-
ter decreases. This effect may be more of an indication
of difficulty in separatcly identifying the two parame-
ters than a real change in the efficiency of either tur-
bine. Studies have shown that a bias in the TT4.5
sensor can have this effect and there is some reason to
believe that the flight data does have a bias exceeding
the instrumentation specification.

The engine deterioration parameters are modeled as
locally constant, as was mentioned in the discussion of
the Kalman filter implementation and as is more ex-
tensively discussed in Ref. 7. These parameters are
picking up relatively constant differences between the
measured engine variables and the predicted trim val-
ues for those variables for a nominal engine. Thus



the paramcters should model how far the stcady-state
cngine deviates from the theoretical nominal engine.
One obvious problem with this formulation is that in-
strumentation biases will appear as the same type of
constant offset from the trim values and thus will end
up being reflected in the deterioration parameters. The
current set of control system sensors is insufficient to
separately identify the engine deterioration parameters
and sensor biases.” This data was obtained from an old
cngine nearing an overhaul; however, the control sys-
tem sensors are representative of fleet type engines. It
was anticipated that both deterioration and sensor bi-
ases would exist on the data being analyzed. This sit-
uation is probably typical of real engines in the ficld
and is the reason an engine adaptive algorithm is de-
sired. Nonetheless it clearly represents a challenging
first test case.

Compact Engine Model Results

There are three means by which the CEM results
can be assessed. First, five of the CEM estimates are
also input measurements to the Kalman filter. Since
this estimation process makes no attempt at estimat-
ing measurement biases, these estimates should match
the measurements closely. However, because these
are input measurements to the estimation process, a
good fit for these variables does little to ensure that
the other estimates are equally as good. Second, for
two of the CEM estimates there are truly independent
checks available. This engine has been instrumented
with pressure and temperature sensors at engine station
2.5 that are not generally available on the F100 engine
and thus were not used in the estimation algorithm.
Results will be compared to two temperature sensors
and to the average of five pressure sensors located at
station 2.5. The station 2.5 engine pressure and tem-
perature estimates are inputs to both of the nonlinear
stall margin calculations and therefore are also key to
the quality of the stall margin estimates. A weaker in-
dependent check for the fan airflow estimate also ex-
ists. The DEEC logic has a simple estimate of the fan
airflow that is used in the DEEC control laws. This es-
timate is dependent on a nominal engine operating on
the nominal operating line. However, previous flight
tests of this engine with extra instrumentation have in-
dicated that the current airflow estimate is accurate.
It is the opinion of the engine manufacturers that the
CEM estimated fan airflow should be better than the
DEEC engine estimate, however, based on previous
flight-test experience the DEEC estimate does provide

another reasonable independent check of the CEM es-
timates. Third, it is interesting to observe how sensi-
tive the estimates are to the bleed airflow model and to
the deterioration estimates. A high degrec of sensitiv-
ity to cither the bleed airflow model or the deterioration
estimates would definitely be cause for concemn.

The CEM estimates of the five measured inputs
(N1, N2, PT4,TT4.5, and AJ) track the mea-
surements extremely well at all three PLA settings
(Fig. 11) with the traces for the measured and esti-
mated data being indistinguishable for all but AJ on
the scales shown. For the independent sensors at en-
gine station 2.5, Fig. 12, the agreement between the
estimates and the flight measured data is poorer. The
two temperature probes disagree by approximately 10°
at the 32°-PLA setting, and are in good agreement
with one another at the 48°- and 83°-PLA settings.
The CEM TT2.5 estimate is approximately 15° to
25° higher than either probe throughout. The CEM
PT?2.5 estimate gives excellent agreement with the
average measured PT2 .5 for PLA settings of 32° and
48° but at a PLA setting of 83°, the estimate is approxi-
mately 0.5 1b/in? low. The CEM estimated fan airflow
also agrees with the engine airflow estimate at the 32°-
and 48°-PLA settings but is about 5 Ib/sec high at the
83°-PLA setting. The comparison of these three pa-
rameters is replotted in Fig. 13 for the 83°-PLA sct-
ting. The difference for all three parameters is primar-
ily a constant offset throughout the segment, however
the traces do not really track each other closely even if
the offset is removed.

A representative example of the estimator’s sensi-
tivity to bleed modeling is shown in Fig. 14. Eight of
the estimated parameters at Mach 0.90, 30,000 ft with
a PLA of 48° are shown. Each plot shows both the es-
timate using the nominal bleed model throughout and
the estimate obtained when the nominal bleed model
was zeroed when the bleed from the left engine was
off. Additionally, the flight data is plotted when avail-
able. From these plots one can determine the sensitiv-
ity of the CEM to a blecd modeling error of 100 percent
of the nominal bleed and therefore determine whether
using the nominal bleed model is acceptable for the
intended application. The most interesting result here
is seen in the PT2.5 traces. The flight data clearly
shows an increase in the pressure when the bleed flow
is tumed off (time = 40 sec). When the bleed is er-
roneously assumed to be at the nominal level through-
out, a similar small rise is seen in the estimated P72 .5



trace. However, when the bleed model is zeroed when
the bleed is tumed off, the PT2.5 estimate remains
fairly constant and does not predict the pressure change
at station 2.5. While the effect is small, this discrep-
ancy indicates a modeling problem in the estimation
process. In contrast, for both T'T'2 .5 and fan airflow,
modeling the bleed off does make the estimate match
the flight data more closely. While the effects of mod-
eling the bleed incorrectly are noticeable in many of
the key unmeasured estimates, the sensitivity to this er-
ror is not excessive and the estimates probably would
still be acceptable for most applications. Since the
nominal bleed schedule is only a coarse estimate for
the actual bleed airflow these results are reassuring.
However, the cumulative effect of multiple errors of
this magnitude would be a problem.

The estimated dcterioration parameters contribute
significantly to the values of the CEM output param-
cters. Figure 15 shows overplots of the flight mea-
surced data and thc CEM cstimates with and without the
Kalman filter derived deterioration parameters for the
five measured inputs for the 32°-PLA condition. The
bleecd model used is identical for both estimates and
has the nominal bleed model zeroed when the bleed
was switched off. As was previously noted, (Fig. 11)
the agreement between the measured data and the es-
timates from the full algorithm is excellent for these
paramcters. However, from the overplots (Fig. 15)
it is also apparent that the high quality of the fit is
dependent on the estimated deterioration parameters.
The estimates obtained without using the deterioration
parameters to correct the CEM to the flight data are
poor, and probably would not be acceptable for many
applications. Thus it appears that the engine adap-
tive features of the estimation algorithm provided by
the Kalman filter are necessary. However, since the
Kalman filter used these five measurements to obtain
the deterioration estimates, agreement of these vari-
ables is not sufficient to guarantee similar accuracy in
the other estimated engine variables. The hope is that
the estimates of the unmeasured variables will be simi-
larly improved by matching the responses of these ma-
jor engine variables.

Comparisons of the estimates with the three inde-
pendent flight data parameters arc shown in Fig. 16.
The estimates of PT2.5 and WCFAN match the
flight data substantially better, and the TT72.5 es-

timate is somewhat improved when the detcriora-
tion estimates are used. Similar results for these
threc paramcters were also obtaincd at a PLA of
48°. However, at the 83°-PLA condition shown in
Fig. 17, the estimates for both PT2.5 and WCFAN
move away from the flight data when the deteri-
oration estimates are used, while the TT2 .5 esti-
mate is again somewhat improved. The amount
that the PT2.5 and WCFAN estimates moved
away from the flight data is small enough not to be
of serious concern in itself, however, it does raisc
the question of whether the deterioration parameters
will generally improve the estimates of the unmeas-
ured variables.

For the other CEM estimates no standards of com-
parison are available. The comparisons for three of
these parameters (the SMF, SM HC, and FN P) are
shown in Fig. 18 for the 32°-PLA case and Fig. 19 for
the 83°-PLA case. Note that in the 32°-PLA case the
CEM predicts the high compressor stall margin to be
up to 15 percent higher and the fan stall margin up to
5 percent higher with the deterioration parameters. At
the 83°-PLA condition (intermediate power) there is
little change in the high compressor stall margin and a
steady 5-percent increase in the fan stall margin. Cau-
tion should be used in trading this extra computed stall
margin for performance gains. The thrust calculation
appears to be far less sensitive to the deterioration pa-
rameter estimates. There is a negligible change in the
thrust estimate at the 32°-PLA setting (Fig. 17) and
only a small change at the 83°-PLA setting (Fig. 18).

Concluding Remarks

Based on the theoretical formulation and the lim-
ited evaluation using flight data, it appears that the per-
formance seeking control (PSC) estimation algorithm
can provide reasonable estimates of an extended set
of engine variables needed for advanced propulsion
control law development. However, the conclusions
drawn from this investigation are limited because of a
lack of high quality independent flight measurements
of many of the variables being estimated. This will
also be a problem in the performance seeking control
(PSC) flight-test evaluation program. Additional sen-
sors or independently derived estimates of many of the
extended variables are needed to firmly establish the
validity of the estimation algorithm.



The adaptive nature of the PSC algorithm is primar-
ily provided by the Kalman filter determined deteriora-
tion parameters. A comparison of the estimates of the
measured variables with and without the deterioration
parameters indicates that the nominal engine model is
not adequate, and off-nominal performance must be
accounted for in an engine estimation algorithm. How-
cever, the success of the deterioration parameters in
matching the compact engine model (CEM) to flight
data for the measured variables cannot be assumed to
cxtend to the unmeasured variables. One case is pre-
sented in which the deterioration parameters move the
CEM estimate further away from the flight data. The
stall margin calculations scem to be particularly sen-
sitive to the deterioration parameter estimates. In the
cases shown there was a significant increase in the two
stall margin estimates caused by using the deteriora-
tion parameters. Since the change is in an unconser-
vative direction, it is not clear how much of the stall
margin increase should be taken advantage of, until
further confidence in these estimates has been estab-
lished. Because of the model structure and limited in-
put measurements available, it is not possible to sep-
arate actual engine deterioration from sensor biases,
Reynolds effects, and other unmodeled phenomena or
modeling errors.
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